if you want to remove an article from website contact us from top.

    al modificar la secuencia se obtienen seres exactamente iguales a los progenitores

    Santiago

    Chicos, ¿alguien sabe la respuesta?

    obtenga al modificar la secuencia se obtienen seres exactamente iguales a los progenitores de este sitio.

    Introducción a la genética

    Introducción a la genética

    Ir a la navegación Ir a la búsqueda

    La genética es el estudio de los genes, lo que son y cómo funcionan, siendo las unidades dentro de una célula que controlan la forma en que viven los organismos y heredan rasgos (llamados caracteres biológicos y que es una característica) de sus antepasados; por ejemplo, los niños, producidos por la reproducción sexual, por lo general se parecen a sus padres porque ellos han heredado los genes 50% de cada padre. La genética trata de identificar qué características se heredan, y explicar cómo estas características pasan de generación en generación.

    Algunos rasgos son parte de la apariencia física de un organismo; como una persona con ojos de cierto color, la altura y/o el peso. Otros tipos de rasgos no son tan fáciles de ver e incluyen los tipos de sangre o la resistencia a las enfermedades. La forma en que nuestros genes y el entorno interactúan para producir un rasgo puede ser complicado. Por ejemplo, el diseño general de las rayas de un tigre se hereda, mientras que el patrón de rayas de tigre en una persona está influenciado por factores ambientales que son difíciles de determinar.

    Los genes están hechos de una gran molécula llamada ADN, la cual es dividida en pedazos separados que se llaman cromosomas. Los seres (humano)s tienen 46: 23 pares, aunque este número varia entre las especies , por ejemplo muchos primates tienen 24 pares. Meiosis es un proceso lo cual crea células especiales, esperma en machos y huevos en hembras, los cuales solo contienen 23 cromosomas y es solo cuando los dos células se fusionan en una célula, que se llama un cigoto, y donde el doble hélice divide, con cada hélice ocupando una de las células hijas, resulta la mitad del número normal de genes. El cigoto luego divide en cuatro células hijas, y en este tiempo ya se ha ocurrido la recombinación genética, creando un nuevo embrión con 23 pares de cromosomas, la mitad de cada padre. Apareamiento y el resultante escogimiento de pareja crean la selección sexual. La división de células normal (mitosis) se hace posible cuando el doble hélice separa, y un complemento de cada mitad separada está hecho, resulta en dos doble hélices idénticos en una célula, con cada uno ocupando uno de las nuevas células creado cuando se divide la madre célula.

    ADN que se copia y se hereda a través de generaciones. Todos contienen cuatro nucleótidos, abreviados como C (citosina), G (guanina), A (adenina), o T (timina) los cuales se alinean en una secuencia particular y hacer una cuerda larga dentro de esta larga molécula. Existen dos cuerdas de nucleótidos enrollados el uno por el otro en cada cromosoma. C en una cuerda siempre se opone a G en la otra; A siempre se opone a T. Existen más o menos 3,2 billones de pares de nucleótidos en todas las cromosomas: este es el genoma humano. La orden de los nucleótidos lleva la información genética, el lenguaje utilizado por el ADN, semejante a cómo el orden de las letras en una página de texto llevan la información. Mientras tanto el el código genético, que permite a la maquinaria genética leer la información de los genes. Tres de los nucleótidos en una hilera - un tripletes - lleva una unidad de información: un codón.

    La heredabilidad es cuando información dentro de un gen particular no siempre es exactamente la misma entre un organismo y otro, de modo que diferentes copias de un gen no siempre dan exactamente las mismas instrucciones. Cada forma única de un solo gen se denomina alelo. Como ejemplo, un alelo para el gen del color de cabello puede instruir al cuerpo a producir una gran cantidad de pigmento, produciendo el pelo negro, mientras que un alelo diferente del mismo gen podría dar instrucciones confusas que fallan para producir cualquier pigmento, dando el pelo blanco. Las mutaciones son cambios aleatorios en los genes, y pueden crear nuevos alelos. Las mutaciones también pueden producir nuevos rasgos, tales como cuando las mutaciones a un alelo para el pelo negro producen un nuevo alelo para el pelo blanco. Esta aparición de nuevos rasgos es importante en la evolución.

    Índice

    1 La herencia en la biología

    1.1 Genes y herencia

    1.2 Las enfermedades hereditarias

    2 ¿Cómo funcionan los genes?

    2.1 Los genes hacen proteínas

    2.2 Los genes se copian

    3 Los genes y la evolución

    4 La ingeniería genética

    5 Referencias 6 Enlaces externos

    La herencia en la biología[editar]

    Genes y herencia[editar]

    El pelo rojo es un rasgo recesivo.

    Los genes se heredan como unidades de dos padres que dividen copias de sus genes a su descendencia. Este proceso puede ser comparada con la mezcla de dos manos de cartas. Los seres humanos tienen dos copias de cada uno de sus genes, y hacen copias que se encuentran en los óvulos o el esperma, pero que solo incluyen una copia de cada tipo de gen. Un óvulo y un espermatozoide se unen para formar un conjunto completo de genes. El niño finalmente tiene el mismo número de genes que sus padres. Para cualquier gen, una de sus dos copias viene de su padre y la otra de su madre.1​

    Los efectos de esta mezcla depende de los tipos (los alelos) del gen. Si el padre tiene dos copias de un alelo para el cabello rojo, y la madre tiene dos copias de cabello castaño, todos sus hijos obtener los dos alelos que dan instrucciones diferentes, uno para el pelo rojo y uno para el marrón. El color del pelo de estos niños depende de la forma en que estos alelos trabajan juntos. Si un alelo anula las instrucciones de otro, se le llama el alelo dominante, y el alelo que está anulado se denomina alelo recesivo. En el caso de una hija con alelos para ambos el pelo rojo y marrón, marrón es dominante y ella termina con el pelo marrón.2​

    fuente : es.wikipedia.org

    Genoma humano

    Genoma humano

    Kornblihtt, Alberto

    Biólogo, UBA. Doctor en Química, Fundación Campomar. Galardonado con los premios Konex de Platino en biología molecular y de Brillante como científico más destacado de la década 2003-2013.

    Introducción. Todos los organismos vivos estamos compuestos por células. La información genética está contenida en el ADN (ácido desoxirribonucleico). Esta sustancia química es el componente principal de los cromosomas del núcleo de las células. Las células del cuerpo humano tienen 46 cromosomas, en realidad, 23 pares. De cada par, uno de los cromosomas proviene del padre y el otro de la madre, y se dice que los dos cromosomas de cada par son homólogos entre sí. La molécula de ADN está formada por la repetición de unidades químicas menores llamadas bases.

    Hay cuatro bases identificadas por las letras A, T, C y G, por adenina, timina, citosina y guanina, respectivamente. Dos hebras de ADN se aparean para formar la estructura en doble hélice descubierta por Watson y Crick en 1953. Las bases de cada hebra se enfrentan o aparean con las bases de la otra, siguiendo siempre la misma regla: frente a A sólo se ubica T y frente a C sólo se ubica G. Se dice que dos hebras que se aparean según estas reglas son complementarias. Así, una hebra de secuencia TGAATTGCCGCCCGATAT tendrá como complementaria una hebra de secuencia ACTTAACGGCGGGCTATA. La complementariedad de bases permite que el ADN se duplique fielmente. Para esto primero se separan las dos hebras y cada una de ellas sirve de molde para fabricar, por medio de enzimas de la célula, otra complementaria y así tener dos dobles hélices idénticas a la original, es decir, con la misma secuencia, la misma información. Una vez duplicada, la información se transmite equitativamente de una célula madre a sus dos células hijas a través de la mitosis, o división celular. Otro tipo de división celular, llamada meiosis, ocurre en las células madres de las gametas (espermatozoides en el hombre y óvulos en la mujer). En la meiosis, se reduce a la mitad el número de cromosomas.

    En los humanos, al igual que en la mayoría de los mamíferos, la información genética contenida en los 23 cromosomas de una gameta (célula haploide) tiene aproximadamente 3.300 millones de bases de longitud. Al poseer 46 cromosomas, el resto de las células (llamadas diploides) tiene el doble. Cuando decimos que se ha “secuenciado” el genoma humano, lo que queremos decir es que se ha determinado experimentalmente cuál es el ordenamiento preciso de esos 3.300 millones de bases del núcleo de una gameta humana. Todas las células de un organismo pluricelular, como los humanos, tienen la misma información genética, porque todas ellas derivan, por mitosis, de una única célula, el cigoto, que se forma por la fusión del espermatozoide con el óvulo. Hay excepciones a esta regla: un tipo especial de células de la sangre, los linfocitos, pierden una pequeña porción de ADN durante el desarrollo del individuo, como parte de un programa que permite la adaptabilidad del sistema inmunitario.

    Genoma y genes. Llamamos genoma al conjunto de todo el ADN de una célula de una especie y los genes que éste contiene. En sentido estricto, el genoma humano no sólo comprende al ADN del núcleo sino también al de las mitocondrias que, aunque sólo tiene 16.000 bases de longitud, es esencial para el funcionamiento celular. Los genes son segmentos de ADN capaces de ser transcriptos –es decir, copiados– a una molécula de ARN (ácido ribonucleico) con igual secuencia que el gen. Los genes no se encuentran yuxtapuestos a lo largo de los cromosomas, sino más bien esparcidos y separados a grandes distancias por secuencias de ADN intergénicas. Las regiones intergénicas constituyen el 70% del genoma, mientras que los genes representan sólo un 30%. Se estima que el genoma humano tiene unos 20.000 genes. Estos genes codifican distintos tipos de ARN, entre los que se encuentran los llamados ARNs mensajeros, que codifican a su vez proteínas. Los otros ARNs, los que no son mensajeros, reciben el nombre genérico de ARNs no codificantes: no son intermediarios entre el gen y la proteína sino que cumplen funciones en sí mismos. Entre éstos están los ARNs ribosomales, de transferencia, nucleares pequeños, los micro ARNs y las ribozimas. Por lo tanto, la definición según la cual un gen es el segmento de ADN que codifica una proteína, no es estrictamente correcta: muchos genes codifican proteínas, pero no todos. Cada uno de los genes que codifican proteínas tiene regiones que estarán representadas en el ARN mensajero maduro intercaladas por otras cuyas secuencias no estarán representadas allí. Las primeras regiones se llaman exones, en tanto que las segundas son los intrones. Mientras los intrones no son codificantes, la mayoría de los exones son las regiones del genoma que codifican proteínas. Estas regiones constituyen sólo el 1,5% del genoma.

    Cada cromosoma tiene muchos genes, y la posición que ocupa cada gen a lo largo del cromosoma se denomina locus (del latín, lugar). Cada gen tiene entonces su copia homóloga en el locus equivalente del otro cromosoma del par. Cada una de las dos copias del gen se llama alelo.

    Digamos, entonces, que una célula humana tiene dos alelos para cada uno de sus 20.000 genes distintos. No todos los genes se expresan (es decir, se transcriben y se traducen) al mismo tiempo y en el mismo lugar. En un tejido o tipo celular determinado se expresa un subconjunto del conjunto de todos los genes. Uno de los puntos clave de la regulación de la expresión de los genes, es el control de la transcripción. Este control no sólo se ocupa de “encender” o “apagar” genes (efecto del todo o nada), sino también de regular la cantidad de producto (ARN o proteína) de los genes “encendidos”.

    fuente : salud.gob.ar

    Genes y cromosomas

    Genes y cromosomas y Fundamentos - Aprenda de los Manuales MSD, versión para público general.

    Genes y cromosomas

    Por

    David N. Finegold

    , MD, University of Pittsburgh

    Modificación/revisión completa

    VER VERSIÓN PROFESIONAL

    Genes Cromosomas Rasgos

    Trastornos genéticos

    Los genes son segmentos de ácido desoxirribonucleico (ADN) que contienen el código para una proteína específica cuya función se realiza en uno o más tipos de células del cuerpo. Los cromosomas son estructuras que se encuentran dentro de las células y que contienen los genes de una persona.

    Los genes están en los cromosomas, que a su vez se localizan en el núcleo de la célula.

    Un cromosoma contiene de cientos a miles de genes.

    Cada una de las células humanas normales contiene 23 pares de cromosomas, es decir 46 cromosomas.

    Un rasgo es una característica determinada genéticamente (por genes) y suele estar determinado por más de un gen.

    Algunos rasgos están causados por genes mutados, los cuales pueden haber sido heredados o ser el resultado de una nueva mutación.

    Las proteínas son probablemente el material más importante del organismo. Las proteínas no solo son los componentes esenciales que forman los músculos, el tejido conjuntivo, la piel y otras estructuras. También son necesarias para producir enzimas. Las enzimas son proteínas complejas que controlan y llevan a cabo casi todos los procesos y reacciones químicas del organismo. El organismo produce miles de enzimas distintas. Así, toda la estructura y funcionamiento del organismo depende del tipo y de las cantidades de proteínas que este sintetice. La síntesis de proteínas se controla a través de los genes, que se hallan contenidos en los cromosomas.

    El genotipo (o genoma) es la combinación única de genes o composición genética de una persona. Es decir, es el conjunto completo de instrucciones con el que el organismo de esa persona sintetiza sus proteínas y, por tanto, con el que ese organismo construirse y funcionar.

    El fenotipo consiste en la estructura y función del organismo de una determinada persona. El fenotipo es cómo se manifiesta el genotipo en una persona; no todas las instrucciones del genotipo pueden llevarse a cabo (o expresarse). Si un gen se expresa o no y la forma cómo lo hace son aspectos que no dependen exclusivamente del genotipo, sino también del entorno (incluidas las enfermedades y la alimentación), además de otros factores diversos, algunos de los cuales son desconocidos.

    Un cariotipo es una imagen del conjunto completo de cromosomas de las células de una persona.

    Genes

    Los humanos tienen alrededor de 20 000 a 23 000 genes.

    ADN

    Los genes están constituidos por ácido desoxirribonucleico (ADN). El ADN contiene el código o las instrucciones usadas para sintetizar las proteínas. Los genes varían en tamaño, en función de la dimensión de las proteínas que codifican. Cada molécula de ADN es una doble hélice larga, semejante a una escalera de caracol de millones de escalones. Cada escalón consiste en un par de moléculas emparejadas. Estas moléculas se denominan bases (nucleótidos). En cada escalón, la base adenina (A) está emparejada con la base timina (T), o la base guanina (G) está emparejada con la base citosina (C). Cada molécula de ADN, extremadamente larga, está enrollada en el interior de uno de los cromosomas.

    Estructura del ADN

    El ADN (ácido desoxirribonucleico) es el material genético de la célula, que se encuentra en los cromosomas, que a su vez, están contenidos en el núcleo de la célula y de las mitocondrias.

    Excepto en algunas células (por ejemplo, en los espermatozoides, los óvulos y los eritrocitos), el núcleo de una célula contiene 23 pares de cromosomas. Un cromosoma contiene muchos genes. Un gen es un segmento de ADN que proporciona el código para sintetizar una proteína.

    La molécula de ADN es una doble hélice larga y enrollada que se asemeja a una escalera de caracol. En una molécula de ADN se encuentran dos hebras, compuestas por un azúcar (desoxirribosa) y por moléculas de fosfato, todo ello conectado por pares de cuatro moléculas llamadas bases, que forman los peldaños de la escalera. Cada par de bases (un peldaño) está emparejado de forma concreta: la adenina se empareja con la timina; y la guanina lo hace con la citosina; Cada par de bases se mantiene unido por un enlace de hidrógeno. Un gen consiste en una secuencia de bases. Cada secuencia de tres bases codifica un aminoácido (los aminoácidos son los componentes esenciales de las proteínas) o bien proporciona otra información.

    Síntesis de proteínas

    Las proteínas están compuestas de una larga cadena de aminoácidos encadenados uno tras otro. Hay 20 aminoácidos distintos disponibles que pueden usarse para la síntesis de proteínas; algunos proceden de alimentos (aminoácidos esenciales), mientras otros se fabrican en el organismo mediante enzimas. Cuando se junta una cadena de aminoácidos, se pliega sobre sí misma creando una compleja estructura tridimensional, que determina su función en el organismo. Dado que el plegado está determinado por una secuencia de aminoácidos precisa, cada secuencia distinta da como resultado una proteína distinta. Algunas proteínas (como la hemoglobina) contienen varias cadenas plegadas. Las instrucciones para la síntesis de proteínas están codificadas en el ADN.

    fuente : www.msdmanuals.com

    ¿Quieres ver la respuesta o más?
    Santiago 17 day ago
    4

    Chicos, ¿alguien sabe la respuesta?

    haga clic para responder